
Is it safe to use
unsafe?

How 10 open source projects manage unsafe code

Tim McNamara @�mClicks

Introduction

About me

I tweet about Rust.

I tweet about Rust.

h�ps://twi�er.com/�mClicks

I waste �me on talking about Rust

I waste �me on talking about Rust

h�ps://reddit.com/u/�mClicks

I do live coding in Rust

I do live coding in Rust

h�ps://twitch.tv/�mClicks

I make videos about Rust

I make videos about Rust

h�ps://youtube.com/�mClicks

I write books about Rust

I write books about Rust

h�ps://rus�nac�on.com/

My goal

My goal
To shorten the �me it takes for you to learn Rust by

100h.

Unsafe
guidelines for
the impatient

Use #[deny(unsafe_code)]

Use #[deny(unsafe_code)]
Add comments to all unsafe blocks

Use #[deny(unsafe_code)]
Add comments to all unsafe blocks
Ask someone who is not familiar with the code to
review the comment. If they do not understand why
the unsafe block is safe, then the comment (or
perhaps the code) should be revised.

Objective: safety

Objective: safety
Remember: other people make mistakes

Objective: safety
Remember: other people make mistakes

Your job is to create a system that makes it very hard
for a stressed, overworked and distracted staff

members from doing the wrong thing.

Let’s learn about how other projects manage the risk
of unsafe blocks.

Let’s learn about how other projects manage the risk
of unsafe blocks.

But first, a story.

Lemons and limes

Warning

Disallowing unsafe blocks
in your project is insu�cient

Using only safe Rust, it is possible to create code that
is guaranteed to crash.

struct Container<T> {
 storage: Vec<T>,
 position: usize,
}

impl<T> Container<T> {
 fn get(&self) -> &T {
 &self.storage[self.position]
 }

 fn poison(&mut self) {
 self.position = self.storage.len() + 1;
 }
}

About the
research

Rationale

Rationale
actix-web

Aims

Aims
understand what Rust leaders are doing

Aims
understand what Rust leaders are doing
make a case for further research (community
standards)

Methodology

Methodology
qualita�ve research, rather than quan�ta�ve

Methodology
qualita�ve research, rather than quan�ta�ve
select a small sample of public open source projects,
primarily from companies that should be doing the
right thing and/or are high impact

Methodology
qualita�ve research, rather than quan�ta�ve
select a small sample of public open source projects,
primarily from companies that should be doing the
right thing and/or are high impact
Look for documenta�on for contributors and code
snippets

Projects

servo
Rust’s founda�onal project.

servo
Rust’s founda�onal project.

Really interes�ng look at how Rust emerged. Many of
the documents in the wiki are quite old.

Strategy: deny unsafe
Servo requires #[allow(unsafe_code)] at the top

of files that require unsafe blocks.

#[deny(unsafe_code)]
pub mod safe_module {

 #[allow(unsafe_code)]
 pub fn danger() -> i32 {
 unsafe { 42 }
 }

}

cargo-
geiger

An extension to cargo.

cargo-
geiger

An extension to cargo.

This project is designed to allow you to assess the use
of unsafe in your dependencies. How do they

manage unsafe themselves?

Strategy: forbid unsafe
They have added #![forbid(unsafe_code] to the

root their crate.

Strategy: forbid unsafe
They have added #![forbid(unsafe_code] to the

root their crate.

This instructs the compiler that unsafe is not legal.

Strategy: forbid unsafe
They have added #![forbid(unsafe_code] to the

root their crate.

This instructs the compiler that unsafe is not legal.

Unlike #![deny(unsafe_code)], it is impossible to
opt-in to unsafe blocks with #
[allow(unsafe_code)] later.

#[forbid(unsafe_code)]
pub mod safe_module {

 // #[allow(unsafe_code)]
 // pub fn danger() -> i32 {
 // unsafe { 42 }
 // }

}

exa
exa is a replacement for ls. It is one of the Rust

community’s oldest u�li�es.

Why is unsafe needed?
exa talks to the file system via syscalls. In par�cular, it
uses them to inspect files’ extended a�ribute names

via the listxttr syscall family on Linux and macOS.

Strategy: minimal wrappers

#[cfg(target_os = "macos")]
mod lister {
 use std::ffi::CString;
 use libc::{c_int, size_t, ssize_t, c_char, c_void,

uint32_t};
 use std::ptr;

 extern "C" {
 fn listxattr(
 path: *const c_char, namebuf: *mut c_char,
 size: size_t, options: c_int
) -> ssize_t;
 }

 pub fn listxattr_first(&self, c_path: &CString) -> ssize_t {

#[cfg(target_os = "macos")]
mod lister {
 use std::ffi::CString;
 use libc::{c_int, size_t, ssize_t, c_char, c_void,

uint32_t};
 use std::ptr;

 extern "C" {
 fn listxattr(
 path: *const c_char, namebuf: *mut c_char,
 size: size_t, options: c_int
) -> ssize_t;
 }

 pub fn listxattr_first(&self, c_path: &CString) -> ssize_t {

Example taken from fs::feature::xttr.

BLAKE3
BLAKE3 is a very fast cryptographic hash func�on. It is

intended to replace SHA-256 and similar func�ons.

BLAKE3
BLAKE3 is a very fast cryptographic hash func�on. It is

intended to replace SHA-256 and similar func�ons.

(You have stopped using MD5, right?)

Why is unsafe needed?

Why is unsafe needed?
BLAKE3 wants to perform at maximum performance.

It uses compiler intrinsics to access SIMD CPU
instruc�ons.

Strategy: Minimal wrappers

#[inline(always)]
unsafe fn add(a: __m256i, b: __m256i) -> __m256i {
 _mm256_add_epi32(a, b)
}

#[inline(always)]
unsafe fn xor(a: __m256i, b: __m256i) -> __m256i {
 _mm256_xor_si256(a, b)
}

Strategy: Comments around
pointer use

#[inline(always)]
unsafe fn loadu(src: *const u8) -> __m256i {
 // This is an unaligned load, so the pointer cast is

allowed.
 _mm256_loadu_si256(src as *const __m256i)
}

#[inline(always)]
unsafe fn storeu(src: __m256i, dest: *mut u8) {
 // This is an unaligned store, so the pointer cast is

allowed.
 _mm256_storeu_si256(dest as *mut __m256i, src)
}

Firecracker
A new virtual machine manager wri�en in Rust by

Amazon Web Services. Powers AWS Lambda and AWS
Fargate.

Why do they need unsafe?

Why do they need unsafe?
They’re interac�ng with a hypervisor.

Why do they need unsafe?
They’re interac�ng with a hypervisor.

They make heavy use of C++ code, from the Chrome
OS project, for example.

Strategy: just blame rust-
bindgen

/* automatically generated by rust-bindgen */

Aside: CONTRIBUTING.md
Contribu�on Quality Standards Most

quality and style standards are enforced
automa�cally during integra�on tes�ng.

Your contribu�on needs to meet the
following standards:

Separate each logical change into its
own commit.
Each commit must pass all unit &
code style tests, and the full pull
request must pass all integra�on
tests See tests/README md for

tests. See tests/README.md for
informa�on on how to run tests.
Unit test coverage must increase the
overall project code coverage.
Include integra�on tests for any new
func�onality in your pull request.
Document all your public func�ons.
Add a descrip�ve message for each
commit. Follow commit message best
prac�ces.
Document your pull requests. Include
the reasoning behind each change,
and the tes�ng done.
Acknowledge Firecracker’s Apache
2 0 license and cer�fy that no part of

2.0 license and cer�fy that no part of
your contribu�on contravenes this
license by signing off on all your
commits with git -s. Ensure that every
file in your pull request has a header
referring to the repository license file.

winrt-rs
A Rust interface (“language projec�on”) for the

Windows Run�me, developed by Microso�.

Why do they need unsafe?
winrt-rs interfaces with Windows APIs.

Strategy: short unsafe blocks

impl<T: RuntimeType> Array<T> {

 /// Creates an array of the given length with default
values.

 pub fn with_len(len: usize) -> Self {
 assert!(len < std::u32::MAX as usize);

 // WinRT arrays must be allocated with CoTaskMemAlloc.
 let data = unsafe { CoTaskMemAlloc(len *

std::mem::size_of::<T>()) as *mut T };

 if data.is_null() {
 panic!("Could not successfully allocate for Array");
 }

Aside: README.md

Safety

We believe that WinRT bindings can
map to 100% safe Rust. However, o�en
�mes WinRT APIs are implemented in

non-memory safe languages (e.g., C++).
[…]

librsvg
An SVG renderer in Rust by the GNOME project.

Why do they need unsafe?

Why do they need unsafe?
librsvg talks to GLib.

Why do they need unsafe?
librsvg talks to GLib.

It also exposes a C API.

Strategy: culture of
questioning unsafe

h�ps://gitlab.gnome.org/GNOME/librsvg/-/merge_reque

Can you please remind me why this is an
UnsafeCell? The two places where it is
accessed are like let bg = unsafe {

&*self.background_surface.get()
}; - but I think this could be a safe

RefCell instead?

Strategy: minimal wrappers
as seen before

std
Rust’s standard library.

Strategy: provide guidance
for code reviewers

From the :code review guidelines

Unsafe code blocks in the standard
library need a comment explaining why
they’re ok. There’s a �dy lint that checks

this. The unsafe code also needs to
actually be ok.

https://web.archive.org/web/20200318050553/https://forge.rust-lang.org/libs/maintaining-std.html#reviewing-prs

Strategy: seek input from
experts

From the :code review guidelines

The rules around what’s sound and
what’s not can be subtle. See the Unsafe

Code Guidelines WG for current
thinking, and consider pinging @rust-

lang/libs, @rust-lang/lang, and/or
somebody from the WG if you’re in any
doubt. We love deba�ng the soundness
of unsafe code, and the more eyes on it

the be�er!

https://web.archive.org/web/20200318050553/https://forge.rust-lang.org/libs/maintaining-std.html#reviewing-prs

Strategy: Add safety section
to unsafe functions

From std::ptr::read:

/// # Safety
///
/// Behavior is undefined if any of the following conditions are

violated:
///
/// * `src` must be valid for reads.
///
/// * `src` must point to a properly initialized value of type

`T`.
///
/// Like `read`, `read_unaligned` creates a bitwise copy of `T`,

regardless of
/// whether `T` is `Copy`. If `T` is not `Copy`, using both the

returned
/// value and the value at `*src` can violate memory safety

toolshed
An “arena” memory allocator. Typically faster than the

system’s memory allocator, but can waste space.

Why do they need unsafe?
Lots of pointer manipula�on.

Strategy: isolate unsafe
within speci�c modules

All the public API of the Arena is safe, although the
module that implements it makes heavy use of

unsafe internally.

terminusdb
A new graph database that includes a Prolog reasoning

engine.

Why do they need unsafe?
To interface with an external system, SWI-Prolog.

Strategy: isolate unsafe
within a speci�c crate

The project team has decided to create a Rust
interface to Prolog within a completely separate crate.
This avoids introducing unsafe into the storage engine

itself.

Strategy: add comments
around unsafe blocks

Variable-length integer encoding.

/// Encodes a `u64` with a variable-byte encoding in a `Vec`.
///
/// The length of the resultant `Vec` is the encoding length of

`num`.
pub fn encode_vec(num: u64) -> Vec<u8> {
 // Allocate a `Vec` of the right size.
 let mut vec = vec![0; encoding_len(num)];
 // Safety: We have created `vec` with the length of the

encoded bytes of `num`.
 unsafe { encode_unchecked(&mut vec, num) };
 vec
}

Strategy: heavy commenting
within unsafe functions

/// Encodes a `u64` by writing its variable-byte encoding to a
slice.

///
/// Returns the encoding length.
///
/// This function does not ensure that `buf` is large enough to

include the encoding length of the
/// number. In particular, there are no bounds checks on

indexing. The caller of this function must
/// ensure that `buf` is large enough for the encoded `num`.

This can be done, for example, by
/// using `MAX_ENCODING_LEN` to create the `buf` or by using

`encoding_len` to validate the length
/// of `buf`.
unsafe fn encode_unchecked(buf: &mut [u8], mut num: u64) ->

Fuchsia OS
New opera�ng system being developed by Google.

Why do they need unsafe?
Fuchsia’s kernel (zircon) is not wri�en in Rust.

Strategy: developer’s
individual responsibility

As a developer (“editor” in Fuchsia’s terminology), you
have the primary responsibility for ensuring that you’re

safe.

When wri�ng or reviewing unsafe code,
it’s essen�al that you:

clearly iden�fy all of the assump�ons
and invariants required by every
unsafe block;
ensure that those assump�ons are
met;
ensure that those assump�ons will
con�nue to be met.

— (emphasis added)Unsafe code in Rust

https://fuchsia.dev/fuchsia-src/development/languages/rust/unsafe

Strategy: consider future
needs

As a developer (“editor” in Fuschia’s terminology),
you’re required to consider the ability for the

codebase to maintain invariants into the future.

When wri�ng or reviewing unsafe code,
it’s essen�al that you:

clearly iden�fy all of the assump�ons
and invariants required by every
unsafe block;
ensure that those assump�ons are
met;
ensure that those assump�ons will
con�nue to be met.

— (emphasis added)Unsafe code in Rust

https://fuchsia.dev/fuchsia-src/development/languages/rust/unsafe

Strategy: document
invariants

In order to ensure that unsafe invariants
are not broken by future editors, each
usage of unsafe must be accompanied
by a clear, concise comment explaining

what assump�ons are being made.

— Unsafe code in Rust

https://fuchsia.dev/fuchsia-src/development/languages/rust/unsafe

Strategy: isolate unsafety

Where possible, package up unsafety
into a single func�on or module which

provides a safe abstrac�on to the
outside world. FFI calls should usually be
exposed through a safe func�on whose

only purpose is to provide a safe
wrapper around the func�on in

ques�on. These func�ons should
contain a comment with the following

informa�on (if applicable):

Precondi�ons (e.g. what are the valid
states of the arguments?)
Failure handling (e.g. what values
should be free’d? forgo�en?
invalidated?)
Success handling (e.g. what values are
created or consumed?)

— Unsafe code in Rust

https://fuchsia.dev/fuchsia-src/development/languages/rust/unsafe

Strategy: highlight inherently
unsafe types

There are further requirements to guard against
specific problema�c use cases:

Fuschia allows unsafe for either muta�on or aliasing,
but not both at the same �me.

Finally, struct defini�ons containing
unsafe types such as *const, *mut, or
UnsafeCell must include a comment

explaining the internal representa�on
invariants of the type.

If you’ve decided to not automa�cally derive traits for
safety reasons explain that.

If the unsafe type is used to perform a
muta�on OR if it aliases with memory
inside another type, there should be an

explana�on of how it upholds Rust’s
“aliasing XOR muta�on” requirements.

If any deriveable traits are purposefully
omi�ed for safety reasons, a comment
must be le� to prevent future editors

from adding the unsafe impls.

Resources
Fuchsia OS Team “ ”
Brian Anderson “ ”
Ralf Jung (2016) “The Scope of Unsafe”
Ralf Jung (2018) “Two Kinds of Invariants: Safety
and Validity”
rust-unoffical/pa�erns contributors (2018) “

”
Unsafe Working Group “

”

Unsafe code in Rust
Rust API Guidelines

Contain
unsafety in small modules

Unsafe Code Guidelines
Reference

https://fuchsia.dev/fuchsia-src/development/languages/rust/unsafe
https://web.archive.org/web/20200710085646/https://rust-lang.github.io/api-guidelines/documentation.html
https://web.archive.org/web/20200710092613/https://github.com/rust-unofficial/patterns/blob/master/patterns/unsafe-mods.md
https://github.com/rust-lang/unsafe-code-guidelines

Thank you

// reveal.js plugins

