
The Rust Borrow Checker
A Deep Dive

Nell Shamrell-Harrington, Mozilla
@nellshamrell

Is the Borrow Checker a friend or a foe?

The Borrow Checker becomes your
friend through experience...

...understanding how it works also helps.

Nell Shamrell-Harrington
● Sr. Staff Research Engineer at Mozilla
● Lead Editor of This Week in Rust
● Host of the This Week in Rust podcast on the

Rustacean Station
● @nellshamrell

Agenda
● Rust Compiler Overview
● Borrow Checker Deep Dive

Overview of the Rust Compiler

fn main() {
 let numbers = vec![1, 2, 3, 4, 5];

 for n in numbers {
 println!("{}", n);
 }
}

src/main.rs

fn main() {
 let numbers = vec![1, 2, 3, 4, 5];

 for n in numbers {
 println!("{}", n);
 }
}

src/main.rs

fn main() {
 let numbers = vec![1, 2, 3, 4, 5];

 for n in numbers {
 println!("{}", n);
 }
}

src/main.rs

$ cargo run

$ cargo run

1
2
3
4
5

Stages of Compilation
● Lexical Analysis

Source: "The Imposter's Handbook" by Rob Conery

Stages of Compilation
● Lexical Analysis
● Parsing

Source: "The Imposter's Handbook" by Rob Conery

Stages of Compilation
● Lexical Analysis
● Parsing
● Semantic Analysis

Source: "The Imposter's Handbook" by Rob Conery

Stages of Compilation
● Lexical Analysis
● Parsing
● Semantic Analysis
● Optimization

Source: "The Imposter's Handbook" by Rob Conery

Stages of Compilation
● Lexical Analysis
● Parsing
● Semantic Analysis
● Optimization
● Code Generation

Source: "The Imposter's Handbook" by Rob Conery

Wait a minute - isn't the Rust
compiler query based?

Yes...but that is out of
the scope of this talk.

Check out the "Guide
to Rustc Development"

for more info!

https://rustc-dev-guide.rust-lang.org/

Stages of Compilation
● Lexical Analysis
● Parsing
● Semantic Analysis
● Optimization
● Code Generation

Source: "The Imposter's Handbook" by Rob Conery

Lexical Analysis

Lexer
Program

Source: "The Imposter's Handbook" by Rob Conery

A program called a lexer

fn main() {
 let numbers =
 vec![1, 2, 3, 4, 5];

 for n in numbers {
 println!("{}", n);
 }
}

Lexer
Program

Source: "The Imposter's Handbook" by Rob Conery

Lexeme

Lexical Analysis
A program called a lexer takes the raw source code (called a lexeme)

fn main() {
 let numbers =
 vec![1, 2, 3, 4, 5];

 for n in numbers {
 println!("{}", n);
 }
}

Lexer
Program Tokens

Source: "The Imposter's Handbook" by Rob Conery

Lexeme

Lexical Analysis
A program called a lexer takes the raw source code (called a lexeme)
and splits it into tokens

Stages of Compilation
● Lexical Analysis
● Parsing
● Semantic Analysis
● Optimization
● Code Generation

Source: "The Imposter's Handbook" by Rob Conery

Parser
Program

Source: "The Imposter's Handbook" by Rob Conery

Parsing
A program called a parser

Parser
ProgramTokens

Source: "The Imposter's Handbook" by Rob Conery

Parsing
A program called a parser analyzes the tokens

Parser
ProgramTokens

Source: "The Imposter's Handbook" by Rob Conery

Parsing
A program called a parser analyzes the tokens and translates them into
an abstract syntax tree (AST)

Abstract
Syntax
Tree

Source: "Guide to Rustc Development"

Lowering to HIR
The Rust compiler

Rust
Compiler

Source: "Guide to Rustc Development"

The Rust compiler takes the AST

Rust
Compiler

Abstract
Syntax
Tree

Lowering to HIR

And...
● Expands any macros included in the code

Source: "Guide to Rustc Development"

fn main() {
 let numbers = vec![1, 2, 3, 4, 5];

 for n in numbers {
 println!("{}", n);
 }
}

src/main.rs

 println!("{}", n);

src/main.rs

::std::io::_print(::core::fmt::Arguments::new_v1(

 &["", "\n"],

 &match (&n,) {

 (arg0,) => [::core::fmt::ArgumentV1::new(

 arg0,

 ::core::fmt::Display::fmt,

)],

 },

));

src/main.rs

And...
● Expands any macros included in the code
● Desugars certain constructs

Source: "Guide to Rustc Development"

 for n in numbers {

 }

src/main.rs

 let result = match IntoIterator::into_iter(numbers) {

 mut iter => loop {

 let next;

 match iter.next() {

 Some(val) => next = val,

 None => break,

 };

 (...)

 },

 };

src/main.rs

And...
● Expands any macros included in the code
● Desugars certain constructs
● Resolves any imports in the code

Source: "Guide to Rustc Development"

Source: "Guide to Rustc Development"

The Rust compiler takes the AST

Rust
Compiler

Abstract
Syntax
Tree

Lowering to HIR

Source: "Guide to Rustc Development"

The Rust compiler takes the AST and converts it into a Higher-level
Intermediate Representation (HIR)

Rust
Compiler

Abstract
Syntax
Tree HIR

Lowering to HIR

Source: "Guide to Rustc Development"

HIR Data Structures

Node (HirId)

Source: "Guide to Rustc Development"

HIR Data Structures

Definition (DefId)

Node (HirId)

Source: "Guide to Rustc Development"

HIR Data Structures

Crate (CrateNum)

Definition (DefId)

Node (HirId)

fn main() {
 let numbers = vec![1, 2, 3, 4, 5];

 for n in numbers {
 println!("{}", n);
 }
}

src/main.rs

 for n in numbers {

 }

src/main.rs

 let result = match IntoIterator::into_iter(numbers) {

 mut iter => loop {

 let next;

 match iter.next() {

 Some(val) => next = val,

 None => break,

 };

 (...)

 },

 };

src/main.rs

Arm {
 hir_id: HirId {
 owner: DefId(0:3 ~
 sample_code_1[24c3]::main[0]),
 local_id: 107,
 },
 span: src/main.rs:4:5: 6:6,

higher_level_intermediate_representation

Arm {
 hir_id: HirId {
 owner: DefId(0:3 ~
 sample_code_1[24c3]::main[0]),
 local_id: 107,
 },
 span: src/main.rs:4:5: 6:6,

higher_level_intermediate_representation

Represents an arm of
the match expression

Arm {
 hir_id: HirId {
 owner: DefId(0:3 ~
 sample_code_1[24c3]::main[0]),
 local_id: 107,
 },
 span: src/main.rs:4:5: 6:6,

higher_level_intermediate_representation

Node

Arm {
 hir_id: HirId {
 owner: DefId(0:3 ~
 sample_code_1[24c3]::main[0]),
 local_id: 107,
 },
 span: src/main.rs:4:5: 6:6,

higher_level_intermediate_representation

Owned
by a
definition

Arm {
 hir_id: HirId {
 owner: DefId(0:3 ~
 sample_code_1[24c3]::main[0]),
 local_id: 107,
 },
 span: src/main.rs:4:5: 6:6,

higher_level_intermediate_representation

Owned by
a crate

Arm {
 hir_id: HirId {
 owner: DefId(0:3 ~
 sample_code_1[24c3]::main[0]),
 local_id: 107,
 },
 span: src/main.rs:4:5: 6:6,

higher_level_intermediate_representation

Rust
Compiler

Source: "Guide to Rustc Development"

Lowering to MIR

Rust
Compiler

HIR

Compiler then lowers the HIR

Source: "Guide to Rustc Development"

Lowering to MIR

Rust
Compiler

HIR MIR

Compiler then lowers the HIR into Mid-level Intermediate
Representation (MIR)

Source: "Guide to Rustc Development"

Lowering to MIR

Source: "Guide to Rustc Development"

MIR Data Structures
Control Flow Graph

Source: "Guide to Rustc Development"

MIR Data Structures

Definition (DefId)
Basic Block (bb1)Basic Block (bb0)

Control Flow Graph

MIR Data Structures

Definition (DefId)
Basic Block (bb0) Basic Block (bb1)

Statement

Terminator

Statement

Statement Terminator

Source: "Guide to Rustc Development"

Control Flow Graph

 if condition {
 do_one_thing
 } else {
 do_something_else
 }

example.rs

MIR Data Structures

Definition (DefId)
Basic Block (bb0)
Statement

Terminator

Definition (DefId)
Basic Block (bb1)
Statement

Terminator

Definition (DefId)
Basic Block (bb2)
Statement

Terminator

Source: "Guide to Rustc Development"

Control Flow Graph

Are there more MIR data structures?

Check out the "Guide
to Rustc Development"

for more info!

https://rustc-dev-guide.rust-lang.org/

 let result = match IntoIterator::into_iter(numbers) {

 mut iter => loop {

 let next;

 match iter.next() {

 Some(val) => next = val,

 None => break,

 };

 (...)

 },

 };

src/main.rs

 let result = match IntoIterator::into_iter(numbers) {

 };

src/main.rs

bb2: {

 _5 = const <std::vec::Vec<i32> as

std::iter::IntoIterator>::into_iter(move _6)

 span: src/main.rs:4:14: 4:21

mid_level_intermediate_representation

bb2: {

 _5 = const <std::vec::Vec<i32> as

std::iter::IntoIterator>::into_iter(move _6)

 span: src/main.rs:4:14: 4:21

mid_level_intermediate_representation

Basic Block

bb2: {

 _5 = const <std::vec::Vec<i32> as

std::iter::IntoIterator>::into_iter(move _6)

 span: src/main.rs:4:14: 4:21

mid_level_intermediate_representation

Local
(result)

bb2: {

 _5 = const <std::vec::Vec<i32> as

std::iter::IntoIterator>::into_iter(move _6)

 span: src/main.rs:4:14: 4:21

mid_level_intermediate_representation

Span

Stages of Compilation
● Lexical Analysis
● Parsing
● Semantic Analysis
● Optimization
● Code Generation

Source: "The Imposter's Handbook" by Rob Conery

Source: "The Imposter's Handbook" by Rob Conery

Semantic Analysis
Compiler tries to figure out what the programmer is trying to do in a way
the compiler can understand it

Semantic Analysis
At this point the Rust compiler will run several checks - including the
borrow checker

Source: "Guide to Rustc Development"

We'll come back to the borrow
checker shortly...

Stages of Compilation
● Lexical Analysis
● Parsing
● Semantic Analysis
● Optimization
● Code Generation

Source: "Guide to Rustc Development"

Optimization & Code Generation

Source: "Guide to Rustc Development"

This is where the code is transformed into an executable binary

Source: https://llvm.org

LLVM is a collection of modular and re-usable compiler and toolchain
technologies

LLVM

Rust
Compiler

Source: "Guide to Rustc Development"

Optimization & Code Generation

Rust
Compiler

MIR

Compiler lowers the MIR

Source: "Guide to Rustc Development"

Optimization & Code Generation

Rust
Compiler

Compiler lowers the MIR into LLVM Intermediate Representation

Source: "Guide to Rustc Development"

LLVM IR

Optimization & Code Generation

MIR

bb2:

; preds = %bb1

 ret i32 %1, !dbg !194

}

llvm_intermediate_representation

bb2:

; preds = %bb1

 ret i32 %1, !dbg !194

}

llvm_intermediate_representation

Basic Block

LLVM

Source: "Guide to Rustc Development"

Optimization & Code Generation

LLVM

And LLVM takes the LLVM IR

Source: "Guide to Rustc Development"

LLVM IR

Optimization & Code Generation

LLVM

And LLVM takes the LLVM IR, which runs more optimizations on it and
emits machine code

Source: "Guide to Rustc Development"

LLVM IR
Machine

Code

Optimization & Code Generation

LLVM then links the machine code files together to produce the final
binary

Source: "Guide to Rustc Development"

Machine
Code

Optimization & Code Generation

$ cargo run

$ cargo run

1
2
3
4
5

Yay!!!

$ cargo run

1
2
3
4
5

Back to the borrow checker!

src/main.rs

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = x;

 println!("{}", x);

 println!("{}", y);

}

src/main.rs

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = x;

 println!("{}", x);

 println!("{}", y);

}

src/main.rs

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = x;

 println!("{}", x);

 println!("{}", y);

}

src/main.rs

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = x;

 println!("{}", x);

 println!("{}", y);

}

src/main.rs

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = x;

 println!("{}", x);

 println!("{}", y);

}

$ cargo build

$ cargo build

error[E0382]: borrow of moved value: `x`
 --> src/main.rs:7:20
5 | let y = x;
 | - value moved here
6 |
7 | println!("{}", x);
 | ^ value borrowed here after move

error: aborting due to previous error

For more information about this error, try `rustc --explain

E0382`.

Borrow Checker
Does several things including:

● Tracking initializations and moves

Source: "Guide to Rustc Development"

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = x;

 println!("{}", x);

 println!("{}", y);

}

src/main.rs

let x: String; // x is not initialized here

src/main.rs

let x: String; // x is not initialized here

src/main.rs

mid_level_intermediate_representation

debug x => _1;

let _1: std::string::String

let x: String; // x is not initialized here

src/main.rs

mid_level_intermediate_representation

debug x => _1;

let _1: std::string::String

x

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = x;

 println!("{}", x);

 println!("{}", y);

}

src/main.rs

x = String::from("Hi Rusty Days!"); // x is initialized here

src/main.rs

x = String::from("Hi Rusty Days!"); // x is initialized here

src/main.rs

mid_level_intermediate_representation

_2 = const <String as

 From<&str>>::from(const "Hi Rusty Days!")

_1 = move _2;

x = String::from("Hi Rusty Days!"); // x is initialized here

src/main.rs

mid_level_intermediate_representation

_2 = const <String as

 From<&str>>::from(const "Hi Rusty Days!")

_1 = move _2;

x

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = x;

 println!("{}", x);

 println!("{}", y);

}

src/main.rs

let y = x; // x is moved here

src/main.rs

let y = x; // x is moved here

src/main.rs

mid_level_intermediate_representation

debug y => _3;

let _3: &std::string::String;

_3 = move _1;

let y = x; // x is moved here

src/main.rs

mid_level_intermediate_representation

debug y => _3;

let _3: &std::string::String;

_3 = move _1;

let y = x; // x is moved here

src/main.rs

mid_level_intermediate_representation

debug y => _3;

let _3: &std::string::String;

_3 = move _1;

xy

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = x;

 println!("{}", x);

 println!("{}", y);

}

src/main.rs

println!("{}", x); // x is NOT initialized here

src/main.rs

$ cargo build

error[E0382]: borrow of moved value: `x`
 --> src/main.rs:7:20
5 | let y = x;
 | - value moved here
6 |
7 | println!("{}", x);
 | ^ value borrowed here after move

error: aborting due to previous error

For more information about this error,

try `rustc --explain E0382`.

$ cargo build

error[E0382]: borrow of moved value: `x`
 --> src/main.rs:7:20
5 | let y = x;
 | - value moved here
6 |
7 | println!("{}", x);
 | ^ value borrowed here after move

error: aborting due to previous error

For more information about this error,

try `rustc --explain E0382`.

Span

$ cargo build

error[E0382]: borrow of moved value: `x`
 --> src/main.rs:7:20
5 | let y = x;
 | - value moved here
6 |
7 | println!("{}", x);
 | ^ value borrowed here after move

error: aborting due to previous error

For more information about this error,

try `rustc --explain E0382`.

$ rustc --explain E0382
A variable was used after its contents have been moved elsewhere.

fn main() {
 let mut x = MyStruct{ s: 5u32 };
 let y = x;
 x.s = 6;
 println!("{}", x.s);
}

Since `MyStruct` is a type that is not marked `Copy`, the data gets moved
out
of `x` when we set `y`.

$ rustc --explain E0382
Sometimes we don't need to move the value. Using a reference, we can
let another function borrow the value without changing its ownership.

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = &x;

 println!("{}", x);

 println!("{}", y);

}

src/main.rs

$ cargo run

$ cargo run

Hi Rusty Days!
Hi Rusty Days!

Borrow Checker
Does several things including:

● Tracking initializations and moves
● Lifetime inference

Source: "Guide to Rustc Development"

Rust uses "lifetime" in two distinct ways

● Lifetime of a variable
○ Span of time before the value of the variable gets freed
○ Also known as "scope"

Source: "Rust RFC #2094: NLL"

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = x;

 println!("{}", x);

 println!("{}", y);

}

src/main.rs

x is initialized

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = x;

 println!("{}", x);

 println!("{}", y);

}

src/main.rs

x is moved

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = x;

 println!("{}", x);

 println!("{}", y);

}

src/main.rs

x is not
initialized here

Rust uses "lifetime" in two distinct ways

● Lifetime of a variable
○ Span of time before the value of the variable gets freed
○ Also known as "scope"

● Lifetime of a reference
○ Span of time in which the reference can be used

Source: "Rust RFC #2094: NLL"

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = &x;

 println!("{}", x);

 println!("{}", y);

}

src/main.rs

let y = &x;

src/main.rs

let y = &x;

src/main.rs

mid_level_intermediate_representation

debug x => _1;
debug y => _3;
_3 = &_1;

let y = &x;

src/main.rs

mid_level_intermediate_representation

debug x => _1;
debug y => _3;
_3 = &_1;

let y = &x;

src/main.rs

mid_level_intermediate_representation

debug x => _1;
debug y => _3;
_3 = &_1;

xy

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = &x;

 println!("{}", x);

 println!("{}", y);

}

src/main.rs

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = &x;

 drop(x);

 println!("{}", y);

}

src/main.rs

$ cargo build

$ cargo build

error[E0505]: cannot move out of `x` because it is borrowed
 --> src/main.rs:7:10
 |
5 | let y = &x;
 | -- borrow of `x` occurs here
6 |
7 | drop(x);
 | ^ move out of `x` occurs here
8 |
9 | println!("{}", y);
 | - borrow later used here

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = &x;

 drop(x);

 println!("{}", y);

}

src/main.rs

Lifetime
of x

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = &x;

 drop(x);

 println!("{}", y);

}

src/main.rs

Needed
lifetime

of y

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = &x;

 drop(x);

 println!("{}", y);

}

src/main.rs

y can no
longer

reference x

fn main() {

 let x: String;

 x = String::from("Hi Rusty Days!");

 let y = &x;

 drop(x);

 println!("{}", y);

}

src/main.rs

y is dead
here

Rust uses "lifetime" in two distinct ways

● Lifetime of a variable
○ Span of time before the value of the variable gets freed
○ Also known as "scope"

● Lifetime of a reference
○ Span of time in which the reference can be used

● If you make a reference to a value, the lifetime of that reference
cannot outlive the scope of the value

Source: "Rust RFC #2094: NLL"

There is SO much more to both
the compiler and the borrow checker!

Check out the "Guide
to Rustc Development"

for more info!

https://rustc-dev-guide.rust-lang.org/

Is the Borrow Checker a friend or a foe?

It is a friend...though a strict one

but one that will not only tell you when
something is wrong...

...it will also tell you how to fix it.

Nell Shamrell-Harrington
● Sr. Staff Research Engineer at Mozilla
● Lead Editor of This Week in Rust
● Host of the This Week in Rust podcast on the

Rustacean Station
● @nellshamrell

