
Should we have a
2021 Edition?

Steve Klabnik• 07.27.2020

I recently joined Oxide Computer
Company!

We are writing all kinds of things in Rust,
from the firmware up. And we’re hiring!
https://oxide.computer/careers/

Embedded Rust is awesome :)

I’ve started streaming my open source Rust development!
https://www.twitch.tv/steveklabnik

https://www.twitch.tv/steveklabnik

Overview

What are Editions?
Let’s get on the same page

A look back at Rust 2018
Half case study, half retrospective

What should we do?
Should we have Rust 2021?

What are editions?

What are editions? (socially)

A way reflect on longer-term progress
Every six weeks is great, but too fast in some ways

A way to entice new users
Not everyone can pay such close attention to Rust

A nice “rallying cry”
Get people excited about things

What are editions? (technically)

Editions are a way to make breaking changes...
… without actually making breaking changes.

New editions are opt-in
So your old code continues to work just fine.

Editions can’t change everything
This is useful for both humans and compilers.

Editions can make breaking changes

This is usually set in Cargo.toml

Editions can interoperate

Editions can’t change everything

Can change:

● New keywords

● Repurpose syntax

○ Deprecate Trait

○ Introduce dyn
Trait

Cannot change:

● Coherence rules

● Breaking changes to the
standard library

○ One stdlib for your
whole program

“Multi-pass”
compiler

Instead of one pass, rustc does
many passes over your code in
order to create an executable

Input: Source code

● AST (“Abstract Syntax Tree”)
● HIR
● MIR
● LLVM-IR

Output: final binary

Lexical/Syntax analysis
Is your code well-formed?

Semantic analysis
Does your code make sense?

Code generation
Once everything is verified, produce output

The three phases of compilers

Two kinds of steps

Lowering

● These go from one form to
another. “The MIR is then
lowered to LLVM-IR.”

● At each form, things get
simpler. We throw away
stuff we’ve already
validated, making future
steps easier.

Pass

● A compiler check validates
some aspect of your
program, e.g. type checking

● A compiler pass does some
form of transformation, e.g.
an optimization

Building an Abstract Syntax Tree

Take some source code, produce AST
For example,

pub fn plus_one(x: i32) -> i32 { x + 1 }

This gives us:

"stmts": [{"node": {"variant": "Expr","fields": [{"node": { "variant": "Binary",

 "fields": [{"node": "Add"},

 {"node": {"variant": "Path", "fields": ["segments": [{"ident": "x",

Building an Abstract Syntax Tree

Code: x + 1

stmts Expr Binary

Add

x

1

Building an Abstract Syntax Tree

Fundamentally, an AST is a data-structure
representation of our code, as written.

From AST to HIR

High level intermediate representation
Is your code well-formed?

Some things are simplified
Does your code make sense?

From AST to HIR
let values = vec![1, 2, 3, 4, 5];

for x in values {
 println!("{}", x);
}

let values = vec![1, 2, 3, 4, 5];
{
 let result = match IntoIterator::into_iter(values) {
 mut iter => loop {
 let next;
 match iter.next() {
 Some(val) => next = val,
 None => break,
 };
 let x = next;
 let () = { println!("{}", x); };
 },
 };
 result
}

From AST to HIR

Most checks are done on HIR
HIR was the original Rust IR

Type checking
Do all the types work?

Method lookup
Done at compile time

From HIR to MIR

MIR is about control flow
How does execution work in your program?

The core of Rust
Everything superfluous has been removed

Borrow checking is done here
Are all of your references okay?

From HIR to MIR
fn add_one(_1: i32) -> i32{
 let mut _0: i32;
 let mut _2: i32;

 bb0: {
 StorageLive(_2);
 _2 = _1;
 _0 = Add(move _2, const 1i32);
 StorageDead(_2);
 return;
 }
}

From MIR to LLVM-IR

LLVM is an awesome compiler toolkit
It’s not really a VM

LLVM does optimizations and code generation
We are deeply indebted to their work

This is the lowest level
At least until the binary code is generated

From MIR to LLVM-IR

; add_one
; Function Attrs: norecurse nounwind readnone uwtable

define i32 @_ZN10add_one17h3c(i32 %x) unnamed_addr #0 {
start:
 %0 = add i32 %x, 1
 ret i32 %0
}

“Query-based”
compiler

Instead of passes, rustc calls
“queries” in order to create an

executable

In this model, the compiler asks
questions (“what type is this

function?”), and figures out the
answers.

Answers are memoized.

This fits incremental compilation far
better.

Eventually the whole compiler will
be like this, but for now, only parts of
it are.

What does this mean, though?

For compilers

● Basically, editions are not
allowed to differ in MIR

● MIR becomes a common
language for all editions

● This helps make interop
between editions and
overall maintenance easier

For humans

● Things can change
per-edition, but not that
much

● The ecosystem doesn’t split
like it would with a major
version change

A sort of “supra-release cycle”

Rust has three release cycles
Stable, beta, nightly

There are different cadences
Nightly: every night, Stable + beta: every six weeks

Editions don’t have a cadence...
… yet. That’s why this talk exists. And an RFC.

When are editions used?

No policy, strictly speaking
The RFC did not address this question

We did it once before, in 2018
And that retroactively made 2015 the first one

How did that go?
Let’s go over what happened in 2018

A look back at Rust 2018

Rust 2018 was a success

Achieved our goals

● An edition did get shipped

● People understood that
this was different than a
Rust 2.0

● No major issues at this
point

It was a lot of work

● A really big project for the
various teams

● We have never undertaken
something so big, and we
shipped it!

… but not a complete success

The schedule

● We didn’t ship everything

● Some things were only
halfway shipped

● We barely shipped what we
did ship in 2018

The team

● Lots of people working very
hard for far too long

● Extremely high stakes

● A lot of burnout amongst
contributors

○ I was a total mess

We shipped a bunch of stuff!

2018 Edition was behind schedule

Jan 4, 2018

March 29, 2018

June 21, 2018

2018 Edition was behind schedule

Planned Actual

Available in
nightly

Jan 4, 2018 Feb 6, 2018

Release June 21, 2018 Dec 6, 2018

2018 Edition was behind schedule

We tried to do too much

That’s partially because there was a lot to do!
Rust 1.0 was really small

We tried to move in front of the community
Inventing patterns, rather than codifying them

Contributors != employees
Much, much, much harder to plan big initiatives

We proved the mechanism works

2015 and 2018 interoperate just fine
We have our cake and eat it too

We did not split the ecosystem
There’s not two different camps of users who can’t communicate

It’s pretty much silent
I don’t know that most users think about editions 99% of the time

We underestimated the cost

Upgrading is not simple
Even if it’s easy

It takes a lot of time
There’s just a lot of moving pieces

Biggest users bear the biggest burden
… and production users are our biggest users

Feature-driven vs time-boxed

Regular Rust releases are time-boxed
There’s a schedule. 🚂🚅🚄🚆🚉

Rust 2018 was designed around features
There were specific things we needed to get in

It felt like the lead up to Rust 1.0
This was also a huge amount of hard work & therefore burnout

Feature-driven vs time-boxed

Async/await is a great example of this!
Even though it may not feel like it....

Keyword reserved in Rust 2018
We committed to it, but weren’t ready in December 2018

Feature shipped in 2019
IMHO, this is how the process should work

What should we do?

We should have a
2021 Edition

We should also commit to a train
model for editions, and have one

every three years.

It should be much smaller than Rust
2018 was.

A small edition has many positives,
and not many negatives.

Release trains
are good

And editions are a form of
release.

If six weeks goes by without new big
features, we still release a new
rustc.

If three years goes by without new
big breaking changes needed, we
should still release a new edition.

The social part of
editions matters
Some folks argue that it’s not.

It’s nice for people to be able to get a
quick summary of what’s happened
in the past three years.

Folks who don’t use Rust don’t pay
close attention to our (very
frequent) releases. Nor should they!

Smaller editions are a nice marketing
message; Rust is in fact, stable.

What features
should be in Rust

2021?
I actually don’t personally care.

I don’t think that we really need to

consider what should be in the
edition to justify doing an edition.

In fact, I think the argument is
stronger without it.

Consistency and scheduling is key. If
a feature misses an edition train,
there’ll be another in three years.

Why a three-year
cadence?

It’s just a good amount of time.

C++ explicitly follows a three-year
cadence, after C++0x.

Yearly is far too much.

Five years would be too long.

C++0x: a cautionary tale

The first draft was in 2008
C++03 was the previous standard

They hoped for C++08 or C++09
There were specific things we needed to get in

It ended up shipping in 2011
There’s a joke about C++0a, since a in hex is 10 in decimal

We should have specifics soon

Lang team has had a few discussions
Goal is still to have a plan by October

Nothing on the scale of 2018 changes
Those were huge! And there were a lot of them!

There will be an RFC
Niko and I have been working on this. Mostly Niko.

Thanks!

